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Abstract A natively unfolded region of the prion protein,
PrP(90–126) binds Cu2+ ions and is vital for prion propagation.
Pentapeptides, acyl-GGGTH92–96 and acyl-TNMKH107–111,
represent the minimum motif for this Cu2+ binding region.
EPR and 1H NMR suggests that the coordination geometry
for the two binding sites is very similar. However, the visible
CD spectra of the two sites are very different, producing almost
mirror image spectra. We have used a series of analogues of the
pentapeptides containing His96 and His111 to rationalise these
differences in the visible CD spectra. Using simple histidine-con-
taining tri-peptides we have formulated a set of empirical rules
that can predict the appearance of Cu2+ visible CD spectra
involving histidine and amide main-chain coordination.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The application of circular dichroism (CD) spectroscopy in

the far and near UV is well documented. However, although

Lifshitz reported the cotton effect associated with metal ions

in 1925, the interpretation of visible CD associated with metal

binding is not so well understood. Visible CD spectroscopy can

be a very powerful technique to study metal–protein interac-

tions and has gained a resurgence of interest in recent years

[1–15]. Absorption bands from d–d electronic transitions are

often broad and featureless, and these bands can consist of

two or more overlapping bands, produced by different d–d

electron transitions. For example, the absorption maxima ob-

served for Cu2+ square-planar complexes result from three

overlapping transitions [16]. These different bands are often

not fully resolved in the absorption spectra, but CD spectros-

copy can resolve the individual transitions as separate bands,

particularly where the CD bands are of opposite sign. Conse-

quently, CD bands do not always correspond to the

wavelength of the observed absorption maxima. Unlike

absorption spectra, CD spectra are only produced where a me-
Abbreviations: CD, circular dichroism; PrP, prion protein; NMR,
nuclear magnetic resonance; EPR, electron paramagnetic resonance;
His, histidine
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tal ion is in a chiral environment, thus, the free metal ion d–d

transitions are typically CD silent. In this way, the use of vis-

ible CD has the advantage of being immune from interference

by free metal ions, as only the protein-bound species are ob-

served. Thus, pH dependence, stoichiometry and metal bind-

ing curves are readily generated [1]. Furthermore, non-chiral

competing ligands can aid in affinity measurements [2,3].

Optical activity in transition metal ion complexes have been

attributed to three sources: the configurational effect; the con-

formational effect and the vicinal effect [17,18]. The configura-

tional effect makes the strongest contribution to optical

activity and occurs when the distribution of donor groups or

atoms coordinated to the metal ion is not symmetrical. The

conformational effect is due to ring puckering occurring with

certain combinations of ligands and metal ions [19]. In tetrag-

onal peptide complexes with Cu2+, Pd2+ and low spin Ni2+ in

which coordination tends to be planar, the main determinant

of optical activity is the vicinal effect arising from the chiral

substituents around the chelate ring [17,18]. Relatively strong

CD bands are often observed for d–d transitions of tetragonal

complexes involving backbone amide and histidine coordina-

tion, via the imidazole ring [1–13]. Here, the optical activity

observed is due to the vicinal contributions resulting when

the chiral alpha carbon is held in a chelate ring between two

chelating donor atoms, typically adjacent main-chain amides

[18]. The position of the amino acids around the coordination

plane modulates the vicinal effect. A set of section rules was de-

vised to describe this effect. The hexadecant rule divides the

space around the metal ion into 16 quadrants with alternating

sign, while the position of side-chains within these 16 quad-

rants dictates the sign of the contribution [17,18]. However,

the sector rule is not applicable to histidine containing com-

plexes, which represent the majority of Cu2+ complexes bound

to main-chain amides with appreciable affinity. Thus, the hexa-

decant rule is rather cumbersome and its applications limited.

Here, we aim to derive a set of empirical rules for predicting

the appearance of visible CD spectra for Cu2+ and Ni2+

square-planar complexes involving histidine and main-chain

coordination.
2. Materials and methods

2.1. Peptide synthesis and purification
F-moc chemistry was used to synthesise various fragments of prion

protein (PrP). All peptides used were N-terminally acetylated and C-
terminally amidated in order to mimic this region of PrP within the
full-length protein (A.B.C., Imperial College, London). The peptides
were removed from the resin and de-protected before purification
by reverse-phase HPLC. The samples were characterised using mass
blished by Elsevier B.V. All rights reserved.
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spectrometry and 1H NMR spectroscopy. Peptides included: PrP(92–
96) GGGTH; PrP(107–111) TNMKH; PrP(110–115) KHMAGA. Pen-
tapeptide analogues synthesised also included: TNMAH; TNAKH;
TAMKH; TNGKH; GGGAH and GGATH. In addition four tripep-
tides GGH; GAH; AGH and AAH were synthesised.
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2.2. Titrations
Small aliquots of fresh aqueous solutions were used to add metal

ions (Cu2+ as CuCl2 Æ 2H2O, Ni2+ as NiCl2 Æ 6H2O). All titrations were
carried out in the absence of buffers and the pH was measured before
and after acquiring each spectrum, adjusting the pH when necessary
using small aliquots of 100 mM NaOH or HCl. Peptide concentrations
were calculated using the dried weight of each peptide, assuming 10%
moisture content for all peptides.
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2.3. Circular dichroism (CD)
CD spectra were recorded on an Applied Photophysics Chirascan

instrument at 25 �C. A cell with a 1 cm pathlength was used for spectra
recorded between 300 and 800 nm, with sampling points every 2 nm.
Typically, four scans were recorded, and baseline spectra were sub-
tracted from each spectrum. Data were processed using Applied
Photophysics Chirascan Viewer, Microsoft Excel and the Kaleida-
Graph spreadsheet/graph package, smoothing of data were not re-
quired. The direct CD measurements (h, in millidegrees) were
converted to molar ellipticity, De (M�1 cm�1), using the relationship
De = h/33000 Æ c Æ l, where c is the molar concentration and l is the
pathlength.
 λ (nm)  λ (nm)

Fig. 1. Visible CD spectra of Cu2+ bound to various analogues of
PrP(92–96) and PrP(107–111). Using 1 mole equivalent Cu2+ at pH 7.8
and 0.1 mM peptide All peptides are acetylated at the N-terminus and
amidated at the C-terminus.
2.4. Electron paramagnetic resonance spectroscopy (EPR)
X-band EPR spectra were acquired on a Bruker Elexsys E500 spec-

trometer operating at a microwave frequency of 9.33 GHz. The spectra
were acquired over a sweep width of 2000 G, modulation amplitude of
20 G, and a temperature of �20 K.
2.5. Proton nuclear magnetic resonance (NMR)
1H NMR spectra were acquired at 296 K on a Varian Unity

600 MHz spectrometer using 5 mm inverse-detection (1H), triple reso-
nance, z-gradient probes. Spectra were recorded in 100% D2O, a low
power pre-saturation pulse was used to suppress residual water.
TOCSY spectra were typically acquired with 2048[F2] · 512[F1] com-
plex points, employing a DIPSI2 sequence for isotropic mixing, with a
mixing time of �60 ms. The States-TPPI method was used for quadra-
ture detection in the indirect dimension for 2D spectra. Prior to Fou-
rier transformation, sine-squared window functions, phase shifted by
90�, were applied to both dimensions and zero filled to 2048 real
points. Data were processed and analysed using Vnmr (Varian) soft-
ware running on a SGI O2. Proton resonance assignments of each pen-
tapeptide were obtained using the 2D TOCSY data.
Fig. 2. Schematic of the square-planar metal binding sites at His96 and
His111 of the prion protein and associated visible CD signal. This is a
4N complex that dominates at pH � 7 and above. Zzz represents Thr95

or Lys110; Xxx represents Gly94 or Met109. Cu2+ or Ni2+ binding at
His96 , with a Gly two residues preceding the histidine, produces the
visible CD spectra illustrated in black. Conversely binding at His111,
with a side-chain in the Xxx position, produces the mirror image
visible CD spectra illustrated in grey.
3. Results and discussion

We became particularly interested in the source of the sign

modulation of the visible CD spectra associated with the metal

d–d transitions when we observed Cu2+ (and Ni2+) binding

centred around His96 or His111 for a number of prion protein

fragments [4,24]. It is interesting to note that the CD bands for

both the Ni2+ and Cu2+ complexes incorporating His96 are po-

sitive to shorter wavelengths of the absorption maximum

(�540 nm for Cu2+ and �440 nm for Ni2+) and negative to

longer wavelengths. In contrast the CD bands for both Cu2+

and Ni2+ complexes at His111 produce negative CD bands to

shorter wavelengths and positive to longer wavelengths. Thus,

the complexes give visible CD spectra that are almost mirror

images of each other as shown for the pentapeptides,

PrP(92–96) and PrP(107–111) in Fig. 1. The differences causing

these mirror-image CD spectra must be subtle, as 1H NMR

and EPR suggest almost identical coordination. Both Cu2+
and Ni2+ bind to His96 and His111 independently of each other,

forming a similar 4N square-planar complex, shown in Fig. 2.

Cu2+-EPR spectra make no distinction between the two

Cu2+ pentapeptide complexes forming a Type II axial complex,

Fig. 3. At pH 7.8 and 9, the Ai and gi values are consistent with

a 4N species, with Ai and gi values of 16.5 mK and 2.27,

respectively. At pH 6, the gi value shifts to higher field and

the hyper-fine splitting reduces, which is more typical of a

3N1O species with Ai and gi values of 15.3 mK and 2.29.

The pH dependence of the Cu2+ coordination is also apparent

from the visible CD spectra. At pH 6, a weak positive CD

band is observed at 530 nm assigned to the 3N1O species

[24], while the spectra shown in Fig. 1 are for the 4N complex,

which dominate at pH values above 7. Elsewhere, we have
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Fig. 3. EPR spectra Cu1PrP(92–96) and Cu1PrP(107–111) at pH 6.0,
pH 7.8 and pH 9.0. Recorded at 20 K and peptide concentrations of
0.1 mM.
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shown that these complexes form 1:1 species under these con-

ditions: 0.1 mM peptide, stoichiometric metal ion, pH > 7 [4]

while lower pH and sub-stoichiometric copper may favour a

2:1 peptide:copper complex [24]. Similarly, 1H NMR studies

(see Fig. 4 and Ref. [4]) pH 9 of Ni2+ binding for both penta-

peptides, PrP(92–96) and PrP(107–111), show a single diamag-

netic low-spin square-planar complex formed with a 1:1

stoichiometry, characteristic of a 4N complex [4].

We first postulated that the difference in the visible CD spec-

tra might be due to the direction of the main-chain coordina-

tion N or C terminal from the His residues, as had been

previously suggested [12]. However, our studies with pentapep-

tides indicate that the metal ion is binding N-terminally from

the His residue. A hexapeptide with residues C-terminal of

the His, PrP(110–115), KHMAGA, does not bind Cu2+ or

Ni2+ with the same coordination.
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Fig. 4. 1H NMR chemical shifts for a protons upon Ni2+ coordination for pe
Ha of each residue in PrP(92–96), PrP(107–111) and their analogues at pH
Then we proposed that axial coordination of the side-chain

group Lys eNH3, Met eS or Asn NH3 group within TNMKH,

not present in the GGGTH peptide, might be the source of the

difference in circular dichroism. However, mutation of each of

these in turn: TNMAH; TNAKH; TAMKH had no effect on

the sign of the circular dichroism as shown in Fig. 1. Then,

we postulated that the difference in circular dichroism could

arise from axial coordination of the Thr hydroxyl group in

the PrP(92–96) pentapeptide. Again, substitution of Thr95 to

an Ala residue had little effect on the CD spectra, Fig. 1. Final-

ly, we decided it must be the presence or absence of a side-

chain that conferred the difference in the two complexes. Sub-

stitution of a Gly for an Ala in PrP(92–96) had a dramatic ef-

fect, reversing the CD spectra observed, Fig. 1. Similarly, the

opposite effect can be achieved with PrP(107–111) by replacing

the Met with Gly rather than Ala, thus, inverting the circular

dichroism signal. The presence of a side-chain Ala or Met at

the second residue preceding the His gives a negative band

to shorter wavelengths. While the presence of a Gly at this po-

sition produces a positive CD band to shorter wavelengths.

When modelling different side-chain substitution preceding

the His residue for the 4N complex it is clear that the Ala to

Gly substitution will not significantly affect the Cu2+ coordina-

tion geometry of the complex. 1H NMR was used to confirm

that the 4N coordination geometry is unaffected in the penta-

peptide analogues used. Fig. 4 shows coordination shifts upon

Ni2+ binding for the various peptides. The Ha shifts have been

compared for the wild-type pentapeptides, PrP(92–96) and

PrP(107–111), to that of the accompanying analogues. The

data confirm that the substitutions do not affect the basic 4N

coordination, including, His eN and three amides of the Histi-

dine and the two preceding residues. All analogues studied

produce the same diamagnetic low-spin square-planar complex

with Ni2+. There are characteristic changes in the alpha proton

chemical shifts. Residues involved in direct amide coordination

all exhibit coordination shifts to high-field typically between

0.3 and 0.9 ppm, upon Ni2+ binding.

To test our rationale for predicting the appearance of the

visible CD spectra for histidine-containing peptides, we

decided to investigate the phenomenon of the inverted CD sig-

nal more fully using the more general case of simple model tri-

peptides acetylated at the N-terminus. Four tri-peptides were

produced: GGH, AGH, GAH and AAH. Visible CD spectra

obtained with 1 mole equivalent of Cu2+ bound at pH 9.5

are shown in Fig. 5. The spectra are obtained at pH 9.5 to en-
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Fig. 5. Visible CD spectra Cu2+ bound to AAH, GAH, AGH and
GGH. All peptides are N-terminally acetylated with 1 mole equivalent
of Cu2+ added at pH 9.5, peptide concentrations of 0.1 mM. Inset
panels show simulated additions of spectra of (a) Cu1AAH (solid line)
overlaid with (Cu1AGH + Cu1GAH–Cu1GGH), (b) Cu1GAH–
Cu1GGH, and (c) Cu1AGH–Cu1GGH.
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sure that the 4N species dominates, rather than a 3N1O com-

plex. The four Cu2+ loaded peptide spectra obtained at pH 9.5

give CD bands as were predicted by the studies on the penta-

peptide analogues of PrP described in Fig. 1. In particular, the

visible CD signal is clearly modulated by the presence of Ala or

Gly at the position two residues preceding the His residue.

Contributions of the side-chain to the CD signal should be

additive, so to test this we carried out simple additions/sub-

tractions to simulate related spectra. As Gly residues should

not contribute to the CD signal, then Cu2+ loaded spectra of

AGH+GAH�GGH should have the appearance of Cu2+

loaded spectra of AAH. The simulated spectrum is overlaid

with the Cu-AAH spectrum. Comparison of the two spectra,

Fig. 5a, shows a close similarity in terms of position and inten-

sity of bands. Furthermore, GAH minus GGH gives a spec-

trum that simulates the contribution of Ala one residue

preceding the His residue, (Fig. 5b). As predicted from the

pentapeptide studies (Fig. 1), this signal is quite weak and

has only a small contribution on the overall spectra. Most

striking is the spectra of AGH-GGH, which gives a spectrum

that simulates the contribution of a side-chain two residues

preceding the His. As predicted by the pentapeptide analogues,

the presence of Ala two residues preceding the His has a siz-

able contribution to the visible CD spectra with a relatively in-

tense negative CD band at 480 nm and an intense positive

band at 600 nm, Fig. 5c. The CD bands produced are of oppo-

site sign to that of the histidine residue contribution alone

(GGH) and are of greater intensity. The strength of the CD

is sufficiently intense to invert the sign of the overall spectra.

Thus, we have a prediction that Cu2+ (or Ni2+) binding to

His-containing proteins or peptides to form 4N complexes,

will result in a CD spectrum with positive CD to shorter wave-

lengths and negative to longer wavelengths for GZH peptides

(where Z can be any primary amino acid). While XZH (where

X can be any amino acid, except Gly or Pro) will result in a

negative CD signal to shorter wavelengths and a positive CD

signal to longer wavelengths.
We have surveyed the publications of visible CD spectra for

His-containing Cu2+ complexes to see if these rules can be ap-

plied to other copper–histidine complexes. The application of

these simple predictive rules are confirmed for peptides with

a single histidine. For example, as predicted the Cu2+

AcGGGH and AcGGHG visible CD spectra [12] have the

striking appearance of PrP(92–96), while the Cu-AcELAKHA

peptide [13] has the appearance of PrP(107–111), as expected.

Papers by Mylonas et al. show the Cu2+ and Ni2+ 4N com-

plexes for the peptide AcTESHAK [20,21], and as predicted,

these Ni2+ and Cu2+complexes have a very similar appearance

to PrP(107–111). A related peptide, AcTESAHK, has a more

complicated behaviour [21]; however, the spectra predicted

by our empirical rule can readily be created by simply subtract-

ing out the contribution to the spectra for the intermediate spe-

cies, which dominates at pH 6, from the 4N pH 10 spectra.

Complexes involving multiple histidines [22,23] or a free amino

group [6,9] do not produce the complex shown in Fig. 2 and do

not have the appearance of the visible CD spectra shown here.

In peptides and unstructured proteins containing a His residue,

a common coordination mode is that of the 4N complex de-

scribed for His96 and His111 of the prion protein. Coordination

of amides to the C-terminal of the His will take place if a Pro

precedes the His, as is evident for the octarepeat region of PrP.

In this case, the visible CD spectra have quite a different

appearance [1,2]. We hope that our empirical rules will help

in the interpretation of visible CD spectra for Cu2+ and Ni2+

square-planar complexes.
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